Emissions and temperature
Baseline emissions
In MIMOSA, emissions are represented by CO2 emissions only1. The emissions are calculated relative to baseline emissions: emissions that would occur in the absence of any climate policy.
There are two ways to calculate baseline emissions: either directly imported exogenously from
the SSP scenarios, or calculated from the baseline carbon intensity from the SSPs. The latter
accounts for the fact that in the absence of climate policy, baseline emissions would go down if
the GDP goes down, and vice versa. This can be chosen with the parameter baseline_carbon_intensity
.
If this parameter is set to true, baseline emissions are calculated as:
Baseline emissions values
Emission reductions
To calculate the actual emissions per region, the baseline emissions are reduced by a relative abatement factor, which in term is determined by the Marginal Abatement Cost curve and the carbon price (see Mitigation). The regional emissions are then calculated as:
In the first period, reductions are assumed to be zero:
Global and cumulative emissions
The regional emissions are aggregated to global emissions:
which are used to calculate the cumulative emissions. There are two ways to calculate them:
using trapezoidal integration or by simply adding up all the years. The former is more accurate,
while the latter is numerically more stable. This is chosen with the parameter cumulative_emissions_trapz
.
Parameters defined in this module
baseline_carbon_intensity
: If true, use baseline carbon intensity to calculate baseline emissions. If false, the SSP baseline emissions are used, regardless of lower GDP.. Type: bool. Default: True.cumulative_emissions_trapz
: If true, calculate cumulative emissions using trapezoidal interpolation. If false, cum. emissions are simply cum_emissions[t-1] + dt * cum_emissions[t]. This is less accurate, but better for numerical stability. For small dt the approximation is usually still acceptable.. Type: bool. Default: True.
-
The effect of other greenhouse gases is implicitly accounted for in the TCRE which translates cumulative CO2 emissions into temperature change. This assumes a linear relation between CO2 emissions and other greenhouse gases. ↩
Source code in mimosa/components/emissions.py
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
|
The global temperature change is calculated as a linear function of cumulative emissions, with a slope given by the Transient Climate Response to CO2 Emissions (TCRE), following [Dietz et al.] who showed that this performed better than the default two-box DICE climate module.
where \(T_0\) is the initial temperature at the start of the run (by default in 2020), and the TCRE is the Transient Climate Response to CO2 Emissions.
The initial temperature is set to 1.16°C in 2020 by default, following [Visser et al.]. The TCRE is calibrated on the IPCC AR5 or AR6 reports (the median value of the TCRE is the same in the AR5 and AR6 calibration), but the distribution is different.
Calibration of the TCRE
The TCRE is calibrated on the IPCC AR5 and AR6 reports, both using the linear relation shown in the SPM figure of the WG1 report. The default value of the TCRE is 0.62°C per 1000 GtCO2 (median value of the AR5 and AR6 calibration). The 5th and 95th percentiles differ between the two calibrations, with the AR5 calibration having a wider distribution:
Percentile | AR5 TCRE (°C per TtCO2) |
AR6 TCRE (°C per TtCO2) |
---|---|---|
5th | 0.42 | 0.42 |
50th | 0.62 | 0.62 default |
95th | 0.82 | 0.75 |
Source: IPCC AR6 WG1 Figure SPM.10
Temperature target
The usual way to specify a policy target in MIMOSA is using carbon budgets. However, it is also possible to
specify a temperature target. This is done by setting the parameter temperature_target
.
This is an upper bound on the temperature: if the cost-optimal temperature is below this value, this constraint is not binding.
If this parameter is set, the following constraint is active:
Parameters defined in this module
T0
: Temperature in initial year of model run (2020 by default).. Type: quantity. Default: 1.16 delta_degC. Unit: temperature_unit.TCRE
: Transient Climate Response to CO2 Emissions. Type: quantity. Default: 0.62 delta_degC/(TtCO2). Unit: (temperature_unit)/(emissions_unit).temperature_target
: Temperature target in 2100 (and beyond). Can also be false, then no temperature target is imposed. Type: quantity. Default: False. Can also be false. Unit: temperature_unit.
Source code in mimosa/components/emissions.py
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
|
MIMOSA allows several types of constraints on emissions: a global carbon budget, inertia constraints, limits on net negative emissions and constraints on emissions after 2100.
Carbon budget
By default, the carbon budget is set to False
, which means that MIMOSA runs in CBA mode without carbon budget.
If a carbon budget is defined using the parameter carbonbudget
, the following constraint is active:
for \(t \geq 2100\). Note that the carbonbudget
parameter unit should be in GtCO2 (or TtCO2 or MtCO2).
Parameters defined in this module
budget
: Value of the carbon budget. Example: "800 GtCO2" (the unit is important). If set to False, no carbon budget is imposed: this is cost-benefit mode. Default: False.. Type: quantity. Default: False. Can also be false. Unit: emissions_unit.inertia_global
: Maximum reduction speed, in % of initial emissions (should be negative) Can also be false, then no inertia limit is imposed. Type: float. Default: False. Can also be false. Min: -inf. Max: 0.inertia_regional
: Maximum reduction speed, in % of initial emissions (should be negative) Can also be false, then no inertia limit is imposed. Type: float. Default: -0.05. Can also be false. Min: -inf. Max: 0.global_min_level
: Limit on the emission level (globally), mostly used for negative emissions. Can also be false, then no limit is imposed. Type: quantity. Default: -20 GtCO2/yr. Can also be false. Unit: emissionsrate_unit.regional_min_level
: Limit on the emission level (per region), mostly used for negative emissions. Can also be false, then no limit is imposed. Type: quantity. Default: -10 GtCO2/yr. Can also be false. Unit: emissionsrate_unit.no_pos_emissions_after_budget_year
: If true, impose net-zero emissions after budget year (2100). Type: bool. Default: True.non_increasing_emissions_after_2100
: If true, the regional emissions after 2100 are not allowed to climb.. Type: bool. Default: True.
Source code in mimosa/components/emissions.py
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 |
|