Skip to content

Economics

Back to general structure

Economic module and production function

Gross and net GDP

The core of the model is the economic module, detailing how GDP, investments and consumptions vary over time. We use a traditional Cobb-Douglas production function. This means that the gross GDP is calculated by:

$$ \text{GDP}_{\text{gross},t,r} = \text{TFP}_{t,r} \cdot L^{1-\alpha}_{t,r} \cdot K^{\alpha}_{t,r}, $$ with \(\text{TFP}\) the total factor productivity (exogenously calibrated from the baseline SSP scenarios) \(L\) the labor (represented by the total population), \(K\) the capital stock and \(\alpha\) the share of capital in the production function.

Source code in mimosa/common/economics.py
def calc_GDP(TFP, L, K, alpha):
    """
    $$ \\text{GDP}_{\\text{gross},t,r} = \\text{TFP}\\_{t,r} \\cdot L^{1-\\alpha}\\_{t,r} \\cdot K^{\\alpha}\\_{t,r}, $$
    with $\\text{TFP}$ the total factor productivity (exogenously calibrated from the baseline SSP scenarios)
    $L$ the labor (represented by the total population), $K$ the capital stock and $\\alpha$ the share of capital in the production function.

    """
    return TFP * L ** (1 - alpha) * K**alpha

The net GDP is then calculated by subtracting the damages and mitigation costs from the gross GDP. (Note that in MIMOSA, the damages are expressed as a fraction of the gross GDP, whereas the mitigation costs are expressed in absolute terms.)

\[ \text{GDP}_{\text{net},t,r} = \text{GDP}_{\text{gross},t,r} \cdot (1 - \text{damage costs}_{t,r}) - \text{mitigation costs}_{t,r}\]

Investments and consumption

This net GDP is then split in a part of investments (\(I_t\)) and a part of consumption (\(C_t\)), according to a fixed savings rate (\(\text{sr}\)):

\[ I_{t,r} = \text{sr} \cdot \text{GDP}_{\text{net},t,r}, \]
\[ C_{t,r} = (1 - \text{sr}) \cdot \text{GDP}_{\text{net},t,r}. \]

Capital stock

The capital stock \(K_t\) grows over time according to the investments and the depreciation of the capital stock:

\[ K_{t,r} = K_{t-1,r} + \Delta t \cdot \frac{\partial K_{t,r}}{\partial t}, \]

with the change in capital stock calculated by:

\[ \frac{\partial K_{t,r}}{\partial t} = \frac{1}{\Delta t} \cdot ((1 - dk)^{\Delta t} - 1) \cdot K_{t,r} + I_{t,r}.\]
Source code in mimosa/common/economics.py
def calc_dKdt(K, dk, I, dt):
    """
    $$ \\frac{\\partial K_{t,r}}{\\partial t} = \\frac{1}{\\Delta t} \\cdot ((1 - dk)^{\\Delta t}  - 1) \\cdot K_{t,r} + I_{t,r}.$$
    """
    return ((1 - dk) ** dt - 1) / dt * K + I

Since this only gives the change in capital stock, we need to add the initial capital stock to get the actual capital stock. This is calculated as a region-dependent multiple of the initial GDP:

\[ K_{t=0,r} = \text{init_capitalstock_factor}_r \cdot \text{GDP}_{t=0,r}. \]

The initial capital stock factor is a calibration factor to obtain the initial capital stock. TODO: Source (IMF)

Parameters defined in this module

  • init_capitalstock_factor
  • alpha: Output elasticity of capital. Type: float. Default: 0.3. Min: 0. Max: 1.
  • dk: Yearly depreciation rate of capital stock. Type: float. Default: 0.05. Min: 0. Max: inf.
  • sr: Fraction of GDP used for investments. Type: float. Default: 0.21. Min: 0. Max: 1.
  • ignore_damages: Flag to not take into account the damages in the GDP (but damages are calculated). Type: bool. Default: False.
Source code in mimosa/components/cobbdouglas.py
def get_constraints(m: AbstractModel) -> Sequence[GeneralConstraint]:
    """
    # Economic module and production function

    ## Gross and net GDP

    The core of the model is the economic module, detailing how GDP, investments and
    consumptions vary over time. We use a traditional Cobb-Douglas production function. This means
    that the gross GDP is calculated by:

    :::mimosa.common.economics.calc_GDP

    The net GDP is then calculated by subtracting the damages and
    mitigation costs from the gross GDP. *(Note that in MIMOSA, the damages are expressed as a fraction of the gross GDP,
    whereas the mitigation costs are expressed in absolute terms.)*

    $$ \\text{GDP}_{\\text{net},t,r} = \\text{GDP}_{\\text{gross},t,r} \\cdot (1 - \\text{damage costs}_{t,r}) - \\text{mitigation costs}_{t,r}$$

    ## Investments and consumption

    This net GDP is then split in a part of investments ($I_t$) and a part of consumption ($C_t$), according to a fixed savings rate ($\\text{sr}$):

    $$ I_{t,r} = \\text{sr} \\cdot \\text{GDP}_{\\text{net},t,r}, $$

    $$ C_{t,r} = (1 - \\text{sr}) \\cdot \\text{GDP}_{\\text{net},t,r}. $$

    ## Capital stock

    The capital stock $K_t$ grows over time according to the investments and the depreciation of the capital stock:

    $$ K_{t,r} = K_{t-1,r} + \\Delta t \\cdot \\frac{\\partial K_{t,r}}{\\partial t}, $$

    with the change in capital stock calculated by:

    :::mimosa.common.economics.calc_dKdt

    Since this only gives the change in capital stock, we need to add the initial capital stock to get the actual capital stock.
    This is calculated as a region-dependent multiple of the initial GDP:

    $$ K_{t=0,r} = \\text{init_capitalstock_factor}_r \\cdot \\text{GDP}_{t=0,r}. $$

    The initial capital stock factor is a calibration factor to obtain the initial capital stock. TODO: Source (IMF)
    ``` plotly
    {"file_path": "./assets/plots/init_capital_factor.json"}
    ```

    ## Parameters defined in this module
    - init_capitalstock_factor
    - alpha: Output elasticity of capital. Type: float. Default: 0.3. Min: 0. Max: 1.
    - dk: Yearly depreciation rate of capital stock. Type: float. Default: 0.05. Min: 0. Max: inf.
    - sr: Fraction of GDP used for investments. Type: float. Default: 0.21. Min: 0. Max: 1.
    - ignore_damages: Flag to not take into account the damages in the GDP (but damages are calculated). Type: bool. Default: False.



    """
    constraints = []

    m.init_capitalstock_factor = Param(
        m.regions,
        units=quant.unit("currency_unit"),
        doc="regional::economics.init_capital_factor",
    )
    m.capital_stock = Var(
        m.t,
        m.regions,
        initialize=lambda m, t, r: m.init_capitalstock_factor[r] * m.GDP(m.year(t), r),
        units=quant.unit("currency_unit"),
    )

    # Parameters
    m.alpha = Param(doc="::economics.GDP.alpha")
    m.dk = Param(doc="::economics.GDP.depreciation of capital")
    m.sr = Param(doc="::economics.GDP.savings rate")

    m.GDP_gross = Var(
        m.t,
        m.regions,
        initialize=lambda m, t, r: m.GDP(m.year(0), r),
        units=quant.unit("currency_unit"),
    )
    m.GDP_net = Var(
        m.t,
        m.regions,
        units=quant.unit("currency_unit"),
        initialize=lambda m, t, r: m.GDP(m.year(0), r),
    )
    m.investments = Var(m.t, m.regions, units=quant.unit("currency_unit"))
    m.consumption = Var(m.t, m.regions, units=quant.unit("currency_unit"))

    m.ignore_damages = Param(doc="::economics.damages.ignore damages")

    # Cobb-Douglas, GDP, investments, capital and consumption
    constraints.extend(
        [
            RegionalConstraint(
                lambda m, t, r: (
                    m.GDP_gross[t, r]
                    == economics.calc_GDP(
                        m.TFP(m.year(t), r),
                        m.L(m.year(t), r),
                        soft_min(m.capital_stock[t, r], scale=10),
                        m.alpha,
                    )
                    if t > 0
                    else Constraint.Skip
                ),
                "GDP_gross",
            ),
            RegionalInitConstraint(
                lambda m, r: m.GDP_gross[0, r] == m.GDP(m.year(0), r), "GDP_gross_init"
            ),
            RegionalConstraint(
                lambda m, t, r: m.GDP_net[t, r]
                == m.GDP_gross[t, r]
                * (1 - (m.damage_costs[t, r] if not value(m.ignore_damages) else 0))
                - m.mitigation_costs[t, r]
                - m.financial_transfer[t, r],
                "GDP_net",
            ),
            RegionalConstraint(
                lambda m, t, r: m.investments[t, r] == m.sr * m.GDP_net[t, r],
                "investments",
            ),
            RegionalConstraint(
                lambda m, t, r: m.consumption[t, r] == (1 - m.sr) * m.GDP_net[t, r],
                "consumption",
            ),
            RegionalConstraint(
                lambda m, t, r: (
                    (
                        m.capital_stock[t, r]
                        == m.capital_stock[t - 1, r]
                        + m.dt
                        * economics.calc_dKdt(
                            m.capital_stock[t, r], m.dk, m.investments[t, r], m.dt
                        )
                    )
                    if t > 0
                    else Constraint.Skip
                ),
                "capital_stock",
            ),
            RegionalInitConstraint(
                lambda m, r: m.capital_stock[0, r]
                == m.init_capitalstock_factor[r] * m.GDP(m.year(0), r)
            ),
        ]
    )

    return constraints